The article explains semantic text chunking, a technique for automatically grouping similar pieces of text to be used in pre-processing stages for Retrieval Augmented Generation (RAG) or similar applications. It uses visualizations to understand the chunking process and explores extensions involving clustering and LLM-powered labeling.
This article provides a beginner-friendly introduction to HDBSCAN, a powerful hierarchical clustering algorithm that extends the capabilities of DBSCAN by handling varying densities more effectively. It compares HDBSCAN to DBSCAN and KMeans, highlighting the advantages of HDBSCAN in handling clusters of different shapes and sizes.
An overview of clustering algorithms, including centroid-based (K-Means, K-Means++), density-based (DBSCAN), hierarchical, and distribution-based clustering. The article explains how each type works, its pros and cons, provides code examples, and discusses use cases.